PROBLEM SET 4

JIAHAO HU

Prove the following statements regarding a Hilbert space X.

Problem 1. (Polarization identity) For any z,y € X,

Az, y) = llz+yl* = llz = ylI* +illz + iyl|* — il|lz — ay]|*.
Proof. For any x,y € X, we have
(1) lz+yl* = (@ +y,z +y) = lz]* + (z,9) + (g, 2) + [yl
(2) o =yl = (z —y,x —y) = [|l2[I* = (z,9) — (y,2) + [ly]?
(3) Az +yl? = llz = y|* = 2(x,y) +2(y,z) by subtracting (2) from (1)
Replacing y by iy in (3) we get
(4) lz + ayl* — llz — iyl* = 2(x, iy) + 2(iy, x) = ~2i(z,y) + 2i(y, )
B) e+ ayl? e - ayl? = 2(x,y) — 2y, @)
Therefore by adding (3) and (5) we get

lz +yl? = |z = yl* + illz +iy[|* —illz —iy]|* = 4(z, y).

O

Problem 2. If E C X, (E*+)* is the smallest closed subspace of X containing E.

Proof. Since perpendicular subspace of any subspace is closed, (E+)* is closed.
And it follows easily from definition that E C (E+)*. Moreover, since (E+)* is
closed, we see E C (E+)%. Claim that E = (E+)L, hence (E+)~ is the smallest
closed subspace of X' containing E. Indeed, otherwise there exists » € (E+)+\E,
then by Hahn-Banach theorem, there exists f € X* so that f|z =0 and f(x) # 0.
Then by theorem 5.25 there exists y € X so that f(—) = (—,y). Therefore y € E-+
and (z,y) # 0, but this violates the assumption that z € (E+)*. O

Problem 3. FEwvery closed conver set K C X has a unique element of minimal
norm.

Proof. The result is trivial if 0 € K, so we may assume 0 € K and in particular if
x € K then —z ¢ K. Let § = inf{||z| : # € K} and let {z,} be a sequence in K
such that ||z,| — §. Since K is convex, sz, + 2z, € K, s0 ||3z, + 22| > 6.
Therefore by parallelogram law,

20 = Zm|* = 2(/lznll® + |2m]1?) = 20 + 2m]?
< 2(||Jcn||2 + ||xm||2) —46%2 50 asn,m — oo.

So {z,} is a Cauchy sequence, let = limx,,. We see x € K since K is closed, and
|lz|| = lim ||z, || = § achieves the minimal norm.
1
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To see the uniqueness of the norm minimizer, let z,y € K such that ||z| =
ly]| = d. Consider the function

f@) = |t + (1 —t)y|* = 2t(t — 1) - (6% — Re((x,))) + %, te[0,1].

By Schwartz inequality, Re((z,y)) < |(z,y)| < ||z|/|lyl]| = §* where equality holds if
and only if £ = Ay and Re(\) = |A| = 1, i.e. z =y. So if x # y, then f(t) has a
minimum at % with
1.1 1, 1, 1 )
=)=z —yl|F = 26"+ = 6.
F(5) = g2+ gull* = 26+ 5 Re((o ) <
But 3z + 3y € K by convexity and |3z + 3y < 4, this contradicts the definition
of §. Therefore x = y as desired. O

Problem 4. Let X be an infinite-dimensional Hilbert space.

(1) Every orthonormal sequence in X converges weakly to 0.
(2) The unit sphere S = {x : ||z|| = 1} is weakly dense in the unit ball B = {x :
] <1}

Proof. (1) Let {zn} be an orthonormal sequence in X and f € X*. By the-
orem 5.25, f(—) = (—,y) for some y € X. Then by Bessel’s inequality,
S0 @, y)? < lyl|* < oo, thus the series > o2 |[(xn,y)|* converges,
therefore f(z,) = (zn,y) — 0 as n — oo. This proves {z,} weakly con-
verges to 0.

(2) Let z € B, we show z is a weak limit of some sequence in S. This is trivial
if ||z]| = 1, we may assume ||z|| < 1. Since X is infinite-dimensional, we can
find an orthogonal sequence {z,} with (x,2,) = 0 and that (by a scaling
if necessary) |lz,||> = 1 — ||z|? for all n. We claim {z + z,} C S and
converges to z weakly. Indeed, ||z + z,]|*> = ||z||* + ||z.]|*> = 1, and by (1),
{zn/(1—||z||)} weakly converges to 0, hence so is {x,}, therefore {z + z,}
converges weakly to 0.

(]

Problem 5. Let A and B be non-empty sets. Then (?(A) is isomorphic to (?(B)
iff A and B have equal cardinality.

Proof. On the one hand, if A, B have the same cardinality, then let ¢ : A — B be
a bijection, then ¢ naturally induces a map e, + e4(o) between the (canonical)
set of orthonomal basis of £2(A) to that of £2(B), we may linearly extend this to
a linear map T}, : (*(A) — ¢*(B). It is clear from the definition that T} is unitary
(hence bounded). Moreover Ty has a unitary inverse Ty-1. So T} is a unitary
isomorphism.

On the other hand, if T': ¢2(A) — ¢%(B) is an isomorphism, then ¢?(B) has
two sets of base, namely {T'eq}aca and {eg}gep. Then the desired result follows
from the following lemma. O

Lemma. Let V be a topological vector space, then any two sets of mazimal inde-
pendent vectors in V' have the same cardinality.

Proof of lemma. We need help from our friend Zorn. Let {uq}aca and {vg}sen
be two sets of maximal independent vectors. Consider the set P of pairs (K, ¢)
where K is a subset of A and ¢ : K — B is an injection and {ua,vs}ac Kk, seB\o(K)
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is a maximal independent set. We equip P with a partial order < by declaring
(K,¢) < (L,n) if K C L and |k = ¢.

Fix ag € A, by maximality {ua,,vs : B € B} is linear dependent, hence we
may find a linear relation Aguq, + ZBGB tgvg = 0. Notice A9 # 0 otherwise we
have a relation among {vg}gep, also notice that not all g are zero otherwise we
have a relation among {uqs}aca. Choose some Sy € B so that pg, # 0. Then it is
easy to show {uq,,vs : 8 € B\{Bo}} is maximal linearly independent. This means,
we have a member ({ag}, ¢o : ap — Bo) € P, so P is non-empty.

By Zorn’s lemma, P has a maximal element, say (C,¢). We claim C' = A.
Otherwise, there exists some o' € A\C'. Then by maximality of {u., vg}acc, sge(c);
we see {Uqr, U,V 1 @ € C, 5 ¢ ¢(C)} is dependent. Then a similar argument
as before proves there exists some ' ¢ ¢(C) so that {u,ua,vs : @ € C,5 ¢
¢(C), 5 # B’} is maximal linearly independent. This means, we can extend ¢ :
C — B to be a new injection ¢ : C' U {a’} — B by mapping o' to f’. This
contradicts maximality of (C, ¢). So C' = A, and thus we have an injection A — B.
Similarly, we can construct an injection B — A. So finally card(A) = card(B). O

Problem 6. (The mean ergodic theorem) Let U be an unitary operator on the
Hilbert space X, M = {x : Uz = z}, P the orthogonal projection onto M, and
Sp = %2871 U7. Then S, — P strongly.

Proof. Beforeﬂe go to prove S, — P, let’s consider the subspace N := {Uz—z|z €
X}, we show N = M+, First we notice that for any y € M,

Uz —z,y) = (Uz,y) — (z,y) = (,Uy) — (x,9) = (z,y) — (2,y) =0,
therefore N C M, hence so is N/. Suppose for contradiction that N # M-,
then there exists 0 # v € M* perpendicular to all vectors in N, in particular v is
perpendicular to Uv —v and U?v — Uv. Therefore (U%v,v) = (Uv,v) = |lv||?, hence

|Uv —v||? = (Uv, Uv) — (Uv,v) — (v, Uv) + (v, v)
= (U%v,v) — (Uv,v) — (Uv,v) + (v,v) = 0.
It follows that Uv = v, i.e. v € M. But by assumption v € M+, so v = 0 which is
a contradiction.

Now we are ready to show S, — P strongly. Note that since M and M=+
is an orthogonal (closed) decomposition of X, it suffices to show Sp|ym — Plm
strongly and S, |1 — P|aqo strongly. Since both S, and P are the identity map
when restricted to M, it remains to show Sy [y — P|ye = 0 strongly, but since
N = M+ we only need to show S, |y — 0 strongly. Let w = Uz — x € N/, then

1 n 1 n
1Snw] = 182 (U = Dz = [|(U" = Dall < —(1U" || + [ 1)llz]l,
where I is the identity map. Since U is unitary, so is U™, thus ||[U"|| < 1. Therefore
2
| Spw] < E”ZH -0 n—oo
for any w € N. This completes the proof. O

In the following problems X is a locally compact Hausdorff space.

Problem 7. Let Y be a closed subset of X, and u a Radon measure on Y. Prove
that I(f) = [ flydp is a positive linear functional on Co(X), and its induced Radon
measure v on X is given by v(E) = p(ENY).
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Proof. Since integration is linear and preserves signs, it follows I is a positive linear
functional on C.(X). To proceed, we first notice that Y¢ is open and for any
f <Y< fly =0, so by Riesz representation theorem,

o) =supl [ flvdp: £ € CoX).F <Y} =0,

This implies v(E) = v(ENY) for any Borel set E. Then to show v(E) = u(ENY),
it is a (somewhat tedious) routine to take the following steps.

Step 1.(compact sets) Let K be a compact subset of X. Then by Riesz repre-
sentation theorem,

v(K) = inf{/yf\ydu cfeCuX), f>xk}

Since Y is closed in X and X is locally compact Hausdorff, any compact set in X
intersecting Y is compact in Y and any compact set in Y is compact in X. Notice
1 is the unique Radon measure on Y representing fy —du, then

WK Y) = int{ [ gdusg € CoY)g = xacrw )
Y
Now let f € CC(X) with f > x g, then f|Y S OC(Y) and f|y > XKNY, SO

/ flydp > inf{ / gdi: g € Cu(Y),g > xxny} = p(K O Y).
Y Y

Taking infimum on left hand side, we get v¥(K) > (K NY’). On the other hand,

v(KNY)= inf{/yﬂydu feCUX), f > xkny}

So if we take any g € C.(Y) with ¢ > xkny, then g € C.(X) as well, hence
Jy 9dp > p(K NY). Taking infimum on left side, we get u(KNY) > v(KNY) =
v(K). Thus we have v(K) = u(K NY) for all compact K.

Step 2. (open sets) Let U be an open set of X. If K C U and K compact,
then KNY c UNY, thus v(K) = wW(KNY) < uw(UNY). Therefore, by inner
regularity

v(U) =sup{v(K): K C U, K compact} < u(UNY).
On the other hand, if K/ C UNY with K’ compact in Y, then K’ C U and K’ is
compact in X, so

w(K')=uw(K'nY) =v(K') <sup{v(K): K C U, K compact} = v(U).
Take supremum on left side, we get
pUNY)=sup{u(K'): K' CUNY,K' compact in Y} <v(U).

This proves v(U) = u(U NY) for all open U.
Step 3.(Borel sets) Let E be a Borel set. Let U be open with E C U, then
v(U)=p(UNY) > u(ENY), hence by outer regularity,

v(E) =inf{v(U): E CUU open} > u(ENY).

On the other hand, let V be any open subset of Y that contains £ NY, then
V =UNY for some open subset U of X. We may assume, replacing U by U U Y
if necessary, that E C U. Then p(V) = p(UNY) = v(U) > v(F). Taking infimum,
we have

wWENY)=inf{u(V): ENY CV,V openin Y} > v(E).
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This (finally) completes the proof! O

Problem 8. Let p be a Radon measure on X. Let N be the union of all open
U C X such that p(U) = 0. Then N is open, u(N) = 0, and if V is open and
VAN # 0 then u(V) > 0. N€ is called the support of u. Prove x € supp(u) iff
[ fdp >0 for every f € Co(X,[0,1]) s.t f(z) >0

Proof. Tt is clear that N is open since N is a union of open sets. To see u(N) = 0,
we use inner regularity. Let K be any compact set contained in N, then K is
covered by all those open U with u(U) = 0. By compactness, there is a finite
subcover, hence p(K) is no bigger than the sum of measures of those finite open
sets that cover K, which is zero. It follows u(K) = 0 for all K compact contained
in N, thus by inner regularity u(N) = 0. Moreover, if V' is open with V\N # &,
then u(V) > 0, since otherwise V' C N by definition and VAN = @.

Now if = € supp(u), then for every f € C.(X,[0,1]) with f(z) > 0, there is
an open neighborhood V' of x such that f|y > f(z)/2 > 0. Since z € V N N¢,
x € VAN # @, therefore

[ sau= [ fduz r@uvyzz>o.

Conversely if x ¢ supp(u), then z € N. Since X is locally compact, there exists
compact K with x € K C N. By locally compact version of Urysohn’s lemma,
there exists f € C(X,[0,1]) such that f = 1 on K and f = 0 outside a compact
subset of U. Then f(z) =1> 0 but

/deu=/Nfdu§u(N)=



