
PROBLEM SET 4

JIAHAO HU

Prove the following statements regarding a Hilbert space X .

Problem 1. (Polarization identity) For any x, y ∈ X ,

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2.

Proof. For any x, y ∈ X , we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2(1)

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 − 〈x, y〉 − 〈y, x〉+ ‖y‖2(2)

‖x+ y‖2 − ‖x− y‖2 = 2〈x, y〉+ 2〈y, x〉 by subtracting (2) from (1)(3)

Replacing y by iy in (3) we get

‖x+ iy‖2 − ‖x− iy‖2 = 2〈x, iy〉+ 2〈iy, x〉 = −2i〈x, y〉+ 2i〈y, x〉(4)

i‖x+ iy‖2 − i‖x− iy‖2 = 2〈x, y〉 − 2〈y, x〉(5)

Therefore by adding (3) and (5) we get

‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2 = 4〈x, y〉.

�

Problem 2. If E ⊂ X , (E⊥)⊥ is the smallest closed subspace of X containing E.

Proof. Since perpendicular subspace of any subspace is closed, (E⊥)⊥ is closed.
And it follows easily from definition that E ⊂ (E⊥)⊥. Moreover, since (E⊥)⊥ is
closed, we see Ē ⊂ (E⊥)⊥. Claim that Ē = (E⊥)⊥, hence (E⊥)⊥ is the smallest
closed subspace of X containing E. Indeed, otherwise there exists x ∈ (E⊥)⊥\Ē,
then by Hahn-Banach theorem, there exists f ∈ X ∗ so that f |Ē = 0 and f(x) 6= 0.
Then by theorem 5.25 there exists y ∈ X so that f(−) = 〈−, y〉. Therefore y ∈ E⊥
and 〈x, y〉 6= 0, but this violates the assumption that x ∈ (E⊥)⊥. �

Problem 3. Every closed convex set K ⊂ X has a unique element of minimal
norm.

Proof. The result is trivial if 0 ∈ K, so we may assume 0 ∈ K and in particular if
x ∈ K then −x /∈ K. Let δ = inf{‖x‖ : x ∈ K} and let {xn} be a sequence in K
such that ‖xn‖ → δ. Since K is convex, 1

2xn + 1
2xm ∈ K, so ‖ 1

2xn + 1
2xm‖ ≥ δ.

Therefore by parallelogram law,

‖xn − xm‖2 = 2(‖xn‖2 + ‖xm‖2)− ‖xn + xm‖2

≤ 2(‖xn‖2 + ‖xm‖2)− 4δ2 → 0 as n,m→∞.

So {xn} is a Cauchy sequence, let x = limxn. We see x ∈ K since K is closed, and
‖x‖ = lim ‖xn‖ = δ achieves the minimal norm.
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To see the uniqueness of the norm minimizer, let x, y ∈ K such that ‖x‖ =
‖y‖ = δ. Consider the function

f(t) = ‖tx+ (1− t)y‖2 = 2t(t− 1) · (δ2 −Re(〈x, y〉)) + δ2, t ∈ [0, 1].

By Schwartz inequality, Re(〈x, y〉) ≤ |〈x, y〉| ≤ ‖x‖‖y‖ = δ2 where equality holds if
and only if x = λy and Re(λ) = |λ| = 1, i.e. x = y. So if x 6= y, then f(t) has a
minimum at 1

2 with

f(
1

2
) = ‖1

2
x+

1

2
y‖2 =

1

2
δ2 +

1

2
Re(〈x, y〉) < δ2.

But 1
2x+ 1

2y ∈ K by convexity and ‖ 1
2x+ 1

2y‖ < δ, this contradicts the definition
of δ. Therefore x = y as desired. �

Problem 4. Let X be an infinite-dimensional Hilbert space.

(1) Every orthonormal sequence in X converges weakly to 0.
(2) The unit sphere S = {x : ‖x‖ = 1} is weakly dense in the unit ball B = {x :
‖x‖ ≤ 1}.

Proof. (1) Let {xn} be an orthonormal sequence in X and f ∈ X ∗. By the-
orem 5.25, f(−) = 〈−, y〉 for some y ∈ X . Then by Bessel’s inequality,∑∞
n=1 |〈xn, y〉|2 ≤ ‖y‖2 < ∞, thus the series

∑∞
n=1 |〈xn, y〉|2 converges,

therefore f(xn) = 〈xn, y〉 → 0 as n → ∞. This proves {xn} weakly con-
verges to 0.

(2) Let x ∈ B, we show x is a weak limit of some sequence in S. This is trivial
if ‖x‖ = 1, we may assume ‖x‖ < 1. Since X is infinite-dimensional, we can
find an orthogonal sequence {xn} with 〈x, xn〉 = 0 and that (by a scaling
if necessary) ‖xn‖2 = 1 − ‖x‖2 for all n. We claim {x + xn} ⊂ S and
converges to x weakly. Indeed, ‖x+ xn‖2 = ‖x‖2 + ‖xn‖2 = 1, and by (1),
{xn/(1−‖x‖)} weakly converges to 0, hence so is {xn}, therefore {x+xn}
converges weakly to 0.

�

Problem 5. Let A and B be non-empty sets. Then `2(A) is isomorphic to `2(B)
iff A and B have equal cardinality.

Proof. On the one hand, if A,B have the same cardinality, then let φ : A→ B be
a bijection, then φ naturally induces a map eα 7→ eφ(α) between the (canonical)

set of orthonomal basis of `2(A) to that of `2(B), we may linearly extend this to
a linear map Tφ : `2(A)→ `2(B). It is clear from the definition that Tφ is unitary
(hence bounded). Moreover Tφ has a unitary inverse Tφ−1 . So Tφ is a unitary
isomorphism.

On the other hand, if T : `2(A) → `2(B) is an isomorphism, then `2(B) has
two sets of base, namely {Teα}α∈A and {eβ}β∈B . Then the desired result follows
from the following lemma. �

Lemma. Let V be a topological vector space, then any two sets of maximal inde-
pendent vectors in V have the same cardinality.

Proof of lemma. We need help from our friend Zorn. Let {uα}α∈A and {vβ}β∈B
be two sets of maximal independent vectors. Consider the set P of pairs (K,φ)
where K is a subset of A and φ : K → B is an injection and {uα, vβ}α∈K,β∈B\φ(K)
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is a maximal independent set. We equip P with a partial order ≤ by declaring
(K,φ) ≤ (L, η) if K ⊂ L and η|K = φ.

Fix α0 ∈ A, by maximality {uα0 , vβ : β ∈ B} is linear dependent, hence we
may find a linear relation λ0uα0

+
∑
β∈B µβvβ = 0. Notice λ0 6= 0 otherwise we

have a relation among {vβ}β∈B , also notice that not all µβ are zero otherwise we
have a relation among {uα}α∈A. Choose some β0 ∈ B so that µβ0

6= 0. Then it is
easy to show {uα0

, vβ : β ∈ B\{β0}} is maximal linearly independent. This means,
we have a member ({α0}, φ0 : α0 7→ β0) ∈ P, so P is non-empty.

By Zorn’s lemma, P has a maximal element, say (C, φ). We claim C = A.
Otherwise, there exists some α′ ∈ A\C. Then by maximality of {uα, vβ}α∈C,β/∈φ(C),
we see {uα′ , uα, vβ : α ∈ C, β /∈ φ(C)} is dependent. Then a similar argument
as before proves there exists some β′ /∈ φ(C) so that {uα′ , uα, vβ : α ∈ C, β /∈
φ(C), β 6= β′} is maximal linearly independent. This means, we can extend φ :
C → B to be a new injection φ′ : C ∪ {α′} → B by mapping α′ to β′. This
contradicts maximality of (C, φ). So C = A, and thus we have an injection A→ B.
Similarly, we can construct an injection B → A. So finally card(A) = card(B). �

Problem 6. (The mean ergodic theorem) Let U be an unitary operator on the
Hilbert space X , M = {x : Ux = x}, P the orthogonal projection onto M, and

Sn = 1
n

∑n−1
0 U j. Then Sn → P strongly.

Proof. Before we go to prove Sn → P , let’s consider the subspace N := {Ux−x|x ∈
X}, we show N =M⊥. First we notice that for any y ∈M,

〈Ux− x, y〉 = 〈Ux, y〉 − 〈x, y〉 = 〈x, Uy〉 − 〈x, y〉 = 〈x, y〉 − 〈x, y〉 = 0,

therefore N ⊂ M⊥, hence so is N . Suppose for contradiction that N 6= M⊥,
then there exists 0 6= v ∈ M⊥ perpendicular to all vectors in N , in particular v is
perpendicular to Uv−v and U2v−Uv. Therefore 〈U2v, v〉 = 〈Uv, v〉 = ‖v‖2, hence

‖Uv − v‖2 = 〈Uv,Uv〉 − 〈Uv, v〉 − 〈v, Uv〉+ 〈v, v〉
= 〈U2v, v〉 − 〈Uv, v〉 − 〈Uv, v〉+ 〈v, v〉 = 0.

It follows that Uv = v, i.e. v ∈M. But by assumption v ∈M⊥, so v = 0 which is
a contradiction.

Now we are ready to show Sn → P strongly. Note that since M and M⊥
is an orthogonal (closed) decomposition of X , it suffices to show Sn|M → P |M
strongly and Sn|M⊥ → P |M⊥ strongly. Since both Sn and P are the identity map
when restricted to M, it remains to show Sn|M⊥ → P |M⊥ = 0 strongly, but since
N =M⊥ we only need to show Sn|N → 0 strongly. Let w = Ux− x ∈ N , then

‖Snw‖ = ‖Sn(U − I)x‖ = ‖ 1

n
(Un − I)x‖ ≤ 1

n
(‖Un‖+ ‖I‖)‖x‖,

where I is the identity map. Since U is unitary, so is Un, thus ‖Un‖ ≤ 1. Therefore

‖Snw‖ ≤
2

n
‖x‖ → 0 n→∞

for any w ∈ N . This completes the proof. �

In the following problems X is a locally compact Hausdorff space.

Problem 7. Let Y be a closed subset of X, and µ a Radon measure on Y . Prove
that I(f) =

∫
f |Y dµ is a positive linear functional on Cc(X), and its induced Radon

measure ν on X is given by ν(E) = µ(E ∩ Y ).
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Proof. Since integration is linear and preserves signs, it follows I is a positive linear
functional on Cc(X). To proceed, we first notice that Y c is open and for any
f ≺ Y c, f |Y ≡ 0, so by Riesz representation theorem,

ν(Y c) = sup{
∫
Y

f |Y dµ : f ∈ Cc(X), f ≺ Y c} = 0.

This implies ν(E) = ν(E∩Y ) for any Borel set E. Then to show ν(E) = µ(E∩Y ),
it is a (somewhat tedious) routine to take the following steps.

Step 1.(compact sets) Let K be a compact subset of X. Then by Riesz repre-
sentation theorem,

ν(K) = inf{
∫
Y

f |Y dµ : f ∈ Cc(X), f ≥ χK}.

Since Y is closed in X and X is locally compact Hausdorff, any compact set in X
intersecting Y is compact in Y and any compact set in Y is compact in X. Notice
µ is the unique Radon measure on Y representing

∫
Y
−dµ, then

µ(K ∩ Y ) = inf{
∫
Y

gdµ : g ∈ Cc(Y ), g ≥ χK∩Y }.

Now let f ∈ Cc(X) with f ≥ χK , then f |Y ∈ Cc(Y ) and f |Y ≥ χK∩Y , so∫
Y

f |Y dµ ≥ inf{
∫
Y

gdµ : g ∈ Cc(Y ), g ≥ χK∩Y } = µ(K ∩ Y ).

Taking infimum on left hand side, we get ν(K) ≥ µ(K ∩ Y ). On the other hand,

ν(K ∩ Y ) = inf{
∫
Y

f |Y dµ : f ∈ Cc(X), f ≥ χK∩Y }.

So if we take any g ∈ Cc(Y ) with g ≥ χK∩Y , then g ∈ Cc(X) as well, hence∫
Y
gdµ ≥ µ(K ∩ Y ). Taking infimum on left side, we get µ(K ∩ Y ) ≥ ν(K ∩ Y ) =

ν(K). Thus we have ν(K) = µ(K ∩ Y ) for all compact K.
Step 2. (open sets) Let U be an open set of X. If K ⊂ U and K compact,

then K ∩ Y ⊂ U ∩ Y , thus ν(K) = µ(K ∩ Y ) ≤ µ(U ∩ Y ). Therefore, by inner
regularity

ν(U) = sup{ν(K) : K ⊂ U,K compact} ≤ µ(U ∩ Y ).

On the other hand, if K ′ ⊂ U ∩ Y with K ′ compact in Y , then K ′ ⊂ U and K ′ is
compact in X, so

µ(K ′) = µ(K ′ ∩ Y ) = ν(K ′) ≤ sup{ν(K) : K ⊂ U,K compact} = ν(U).

Take supremum on left side, we get

µ(U ∩ Y ) = sup{µ(K ′) : K ′ ⊂ U ∩ Y,K ′ compact in Y } ≤ ν(U).

This proves ν(U) = µ(U ∩ Y ) for all open U .
Step 3.(Borel sets) Let E be a Borel set. Let U be open with E ⊂ U , then

ν(U) = µ(U ∩ Y ) ≥ µ(E ∩ Y ), hence by outer regularity,

ν(E) = inf{ν(U) : E ⊂ U,U open} ≥ µ(E ∩ Y ).

On the other hand, let V be any open subset of Y that contains E ∩ Y , then
V = U ∩ Y for some open subset U of X. We may assume, replacing U by U ∪ Y c
if necessary, that E ⊂ U . Then µ(V ) = µ(U ∩Y ) = ν(U) ≥ ν(E). Taking infimum,
we have

µ(E ∩ Y ) = inf{µ(V ) : E ∩ Y ⊂ V, V open in Y } ≥ ν(E).
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This (finally) completes the proof! �

Problem 8. Let µ be a Radon measure on X. Let N be the union of all open
U ⊂ X such that µ(U) = 0. Then N is open, µ(N) = 0, and if V is open and
V \ N 6= ∅ then µ(V ) > 0. N c is called the support of µ. Prove x ∈ supp(µ) iff∫
fdµ > 0 for every f ∈ Cc(X, [0, 1]) s.t f(x) > 0.

Proof. It is clear that N is open since N is a union of open sets. To see µ(N) = 0,
we use inner regularity. Let K be any compact set contained in N , then K is
covered by all those open U with µ(U) = 0. By compactness, there is a finite
subcover, hence µ(K) is no bigger than the sum of measures of those finite open
sets that cover K, which is zero. It follows µ(K) = 0 for all K compact contained
in N , thus by inner regularity µ(N) = 0. Moreover, if V is open with V \N 6= ∅,
then µ(V ) > 0, since otherwise V ⊂ N by definition and V \N = ∅.

Now if x ∈ supp(µ), then for every f ∈ Cc(X, [0, 1]) with f(x) > 0, there is
an open neighborhood V of x such that f |V ≥ f(x)/2 > 0. Since x ∈ V ∩ N c,
x ∈ V \N 6= ∅, therefore∫

X

fdµ ≥
∫
V

fdµ ≥ f(x)µ(V )/2 > 0.

Conversely if x /∈ supp(µ), then x ∈ N . Since X is locally compact, there exists
compact K with x ∈ K ⊂ N . By locally compact version of Urysohn’s lemma,
there exists f ∈ C(X, [0, 1]) such that f = 1 on K and f = 0 outside a compact
subset of U . Then f(x) = 1 > 0 but∫

X

fdµ =

∫
N

fdµ ≤ µ(N) = 0.
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