PROBLEM SET 4

JIAHAO HU

Prove the following statements regarding a Hilbert space \mathcal{X} .

Problem 1. (Polarization identity) For any $x, y \in \mathcal{X}$,

$$\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2.$$

Proof. For any $x, y \in \mathcal{X}$, we have

4

(1)
$$||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + \langle x, y \rangle + \langle y, x \rangle + ||y||^2$$

(2)
$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 - \langle x, y \rangle - \langle y, x \rangle + ||y||^2$$

(3)
$$\|x+y\|^2 - \|x-y\|^2 = 2\langle x,y\rangle + 2\langle y,x\rangle$$
 by subtracting (2) from (1)

Replacing y by iy in (3) we get

(4)
$$\|x + iy\|^2 - \|x - iy\|^2 = 2\langle x, iy \rangle + 2\langle iy, x \rangle = -2i\langle x, y \rangle + 2i\langle y, x \rangle$$

(5)
$$i \|x + iy\|^2 - i \|x - iy\|^2 = 2\langle x, y \rangle - 2\langle y, x \rangle$$

Therefore by adding (3) and (5) we get

$$||x+y||^{2} - ||x-y||^{2} + i||x+iy||^{2} - i||x-iy||^{2} = 4\langle x,y \rangle.$$

Problem 2. If $E \subset \mathcal{X}$, $(E^{\perp})^{\perp}$ is the smallest closed subspace of \mathcal{X} containing E.

Proof. Since perpendicular subspace of any subspace is closed, $(E^{\perp})^{\perp}$ is closed. And it follows easily from definition that $E \subset (E^{\perp})^{\perp}$. Moreover, since $(E^{\perp})^{\perp}$ is closed, we see $\bar{E} \subset (E^{\perp})^{\perp}$. Claim that $\bar{E} = (E^{\perp})^{\perp}$, hence $(E^{\perp})^{\perp}$ is the smallest closed subspace of \mathcal{X} containing E. Indeed, otherwise there exists $x \in (E^{\perp})^{\perp} \setminus \bar{E}$, then by Hahn-Banach theorem, there exists $f \in \mathcal{X}^*$ so that $f|_{\bar{E}} = 0$ and $f(x) \neq 0$. Then by theorem 5.25 there exists $y \in \mathcal{X}$ so that $f(-) = \langle -, y \rangle$. Therefore $y \in E^{\perp}$ and $\langle x, y \rangle \neq 0$, but this violates the assumption that $x \in (E^{\perp})^{\perp}$.

Problem 3. Every closed convex set $K \subset \mathcal{X}$ has a unique element of minimal norm.

Proof. The result is trivial if $0 \in K$, so we may assume $0 \in K$ and in particular if $x \in K$ then $-x \notin K$. Let $\delta = \inf\{||x|| : x \in K\}$ and let $\{x_n\}$ be a sequence in K such that $||x_n|| \to \delta$. Since K is convex, $\frac{1}{2}x_n + \frac{1}{2}x_m \in K$, so $||\frac{1}{2}x_n + \frac{1}{2}x_m|| \ge \delta$. Therefore by parallelogram law,

$$\begin{aligned} \|x_n - x_m\|^2 &= 2(\|x_n\|^2 + \|x_m\|^2) - \|x_n + x_m\|^2 \\ &\leq 2(\|x_n\|^2 + \|x_m\|^2) - 4\delta^2 \to 0 \quad \text{as } n, m \to \infty \end{aligned}$$

So $\{x_n\}$ is a Cauchy sequence, let $x = \lim x_n$. We see $x \in K$ since K is closed, and $||x|| = \lim ||x_n|| = \delta$ achieves the minimal norm.

JIAHAO HU

To see the uniqueness of the norm minimizer, let $x, y \in K$ such that $||x|| = ||y|| = \delta$. Consider the function

$$f(t) = \|tx + (1-t)y\|^2 = 2t(t-1) \cdot (\delta^2 - Re(\langle x, y \rangle)) + \delta^2, \quad t \in [0,1].$$

By Schwartz inequality, $Re(\langle x, y \rangle) \leq |\langle x, y \rangle| \leq ||x|| ||y|| = \delta^2$ where equality holds if and only if $x = \lambda y$ and $Re(\lambda) = |\lambda| = 1$, *i.e.* x = y. So if $x \neq y$, then f(t) has a minimum at $\frac{1}{2}$ with

$$f(\frac{1}{2}) = \|\frac{1}{2}x + \frac{1}{2}y\|^2 = \frac{1}{2}\delta^2 + \frac{1}{2}Re(\langle x, y \rangle) < \delta^2.$$

But $\frac{1}{2}x + \frac{1}{2}y \in K$ by convexity and $\|\frac{1}{2}x + \frac{1}{2}y\| < \delta$, this contradicts the definition of δ . Therefore x = y as desired.

Problem 4. Let \mathcal{X} be an infinite-dimensional Hilbert space.

(1) Every orthonormal sequence in \mathcal{X} converges weakly to 0.

- (2) The unit sphere $S = \{x : ||x|| = 1\}$ is weakly dense in the unit ball $B = \{x : ||x|| \le 1\}$.
- *Proof.* (1) Let $\{x_n\}$ be an orthonormal sequence in \mathcal{X} and $f \in \mathcal{X}^*$. By theorem 5.25, $f(-) = \langle -, y \rangle$ for some $y \in \mathcal{X}$. Then by Bessel's inequality, $\sum_{n=1}^{\infty} |\langle x_n, y \rangle|^2 \leq ||y||^2 < \infty$, thus the series $\sum_{n=1}^{\infty} |\langle x_n, y \rangle|^2$ converges, therefore $f(x_n) = \langle x_n, y \rangle \to 0$ as $n \to \infty$. This proves $\{x_n\}$ weakly converges to 0.
 - (2) Let $x \in B$, we show x is a weak limit of some sequence in S. This is trivial if ||x|| = 1, we may assume ||x|| < 1. Since \mathcal{X} is infinite-dimensional, we can find an orthogonal sequence $\{x_n\}$ with $\langle x, x_n \rangle = 0$ and that (by a scaling if necessary) $||x_n||^2 = 1 - ||x||^2$ for all n. We claim $\{x + x_n\} \subset S$ and converges to x weakly. Indeed, $||x + x_n||^2 = ||x||^2 + ||x_n||^2 = 1$, and by (1), $\{x_n/(1 - ||x||)\}$ weakly converges to 0, hence so is $\{x_n\}$, therefore $\{x + x_n\}$ converges weakly to 0.

Problem 5. Let A and B be non-empty sets. Then $\ell^2(A)$ is isomorphic to $\ell^2(B)$ iff A and B have equal cardinality.

Proof. On the one hand, if A, B have the same cardinality, then let $\phi : A \to B$ be a bijection, then ϕ naturally induces a map $e_{\alpha} \mapsto e_{\phi(\alpha)}$ between the (canonical) set of orthonomal basis of $\ell^2(A)$ to that of $\ell^2(B)$, we may linearly extend this to a linear map $T_{\phi} : \ell^2(A) \to \ell^2(B)$. It is clear from the definition that T_{ϕ} is unitary (hence bounded). Moreover T_{ϕ} has a unitary inverse $T_{\phi^{-1}}$. So T_{ϕ} is a unitary isomorphism.

On the other hand, if $T : \ell^2(A) \to \ell^2(B)$ is an isomorphism, then $\ell^2(B)$ has two sets of base, namely $\{Te_\alpha\}_{\alpha \in A}$ and $\{e_\beta\}_{\beta \in B}$. Then the desired result follows from the following lemma.

Lemma. Let V be a topological vector space, then any two sets of maximal independent vectors in V have the same cardinality.

Proof of lemma. We need help from our friend Zorn. Let $\{u_{\alpha}\}_{\alpha \in A}$ and $\{v_{\beta}\}_{\beta \in B}$ be two sets of maximal independent vectors. Consider the set \mathcal{P} of pairs (K, ϕ) where K is a subset of A and $\phi: K \to B$ is an injection and $\{u_{\alpha}, v_{\beta}\}_{\alpha \in K, \beta \in B \setminus \phi(K)}$

 $\mathbf{2}$

is a maximal independent set. We equip \mathcal{P} with a partial order \leq by declaring $(K, \phi) \leq (L, \eta)$ if $K \subset L$ and $\eta|_K = \phi$.

Fix $\alpha_0 \in A$, by maximality $\{u_{\alpha_0}, v_\beta : \beta \in B\}$ is linear dependent, hence we may find a linear relation $\lambda_0 u_{\alpha_0} + \sum_{\beta \in B} \mu_\beta v_\beta = 0$. Notice $\lambda_0 \neq 0$ otherwise we have a relation among $\{v_\beta\}_{\beta \in B}$, also notice that not all μ_β are zero otherwise we have a relation among $\{u_\alpha\}_{\alpha \in A}$. Choose some $\beta_0 \in B$ so that $\mu_{\beta_0} \neq 0$. Then it is easy to show $\{u_{\alpha_0}, v_\beta : \beta \in B \setminus \{\beta_0\}\}$ is maximal linearly independent. This means, we have a member $(\{\alpha_0\}, \phi_0 : \alpha_0 \mapsto \beta_0) \in \mathcal{P}$, so \mathcal{P} is non-empty.

By Zorn's lemma, \mathcal{P} has a maximal element, say (C, ϕ) . We claim C = A. Otherwise, there exists some $\alpha' \in A \setminus C$. Then by maximality of $\{u_{\alpha}, v_{\beta}\}_{\alpha \in C, \beta \notin \phi(C)}$, we see $\{u_{\alpha'}, u_{\alpha}, v_{\beta} : \alpha \in C, \beta \notin \phi(C)\}$ is dependent. Then a similar argument as before proves there exists some $\beta' \notin \phi(C)$ so that $\{u_{\alpha'}, u_{\alpha}, v_{\beta} : \alpha \in C, \beta \notin \phi(C), \beta \neq \beta'\}$ is maximal linearly independent. This means, we can extend $\phi :$ $C \to B$ to be a new injection $\phi' : C \cup \{\alpha'\} \to B$ by mapping α' to β' . This contradicts maximality of (C, ϕ) . So C = A, and thus we have an injection $A \to B$. Similarly, we can construct an injection $B \to A$. So finally card(A) = card(B). \Box

Problem 6. (The mean ergodic theorem) Let U be an unitary operator on the Hilbert space \mathcal{X} , $\mathcal{M} = \{x : Ux = x\}$, P the orthogonal projection onto \mathcal{M} , and $S_n = \frac{1}{n} \sum_{0}^{n-1} U^j$. Then $S_n \to P$ strongly.

Proof. Before we go to prove $S_n \to P$, let's consider the subspace $\mathcal{N} := \{Ux - x | x \in \mathcal{X}\}$, we show $\overline{\mathcal{N}} = \mathcal{M}^{\perp}$. First we notice that for any $y \in \mathcal{M}$,

 $\langle Ux-x,y\rangle = \langle Ux,y\rangle - \langle x,y\rangle = \langle x,Uy\rangle - \langle x,y\rangle = \langle x,y\rangle - \langle x,y\rangle = 0,$

therefore $\mathcal{N} \subset \mathcal{M}^{\perp}$, hence so is $\overline{\mathcal{N}}$. Suppose for contradiction that $\overline{\mathcal{N}} \neq \mathcal{M}^{\perp}$, then there exists $0 \neq v \in \mathcal{M}^{\perp}$ perpendicular to all vectors in \mathcal{N} , in particular v is perpendicular to Uv - v and $U^2v - Uv$. Therefore $\langle U^2v, v \rangle = \langle Uv, v \rangle = ||v||^2$, hence

$$\begin{split} \|Uv - v\|^2 &= \langle Uv, Uv \rangle - \langle Uv, v \rangle - \langle v, Uv \rangle + \langle v, v \rangle \\ &= \langle U^2 v, v \rangle - \langle Uv, v \rangle - \langle Uv, v \rangle + \langle v, v \rangle = 0. \end{split}$$

It follows that Uv = v, *i.e.* $v \in \mathcal{M}$. But by assumption $v \in \mathcal{M}^{\perp}$, so v = 0 which is a contradiction.

Now we are ready to show $S_n \to P$ strongly. Note that since \mathcal{M} and \mathcal{M}^{\perp} is an orthogonal (closed) decomposition of \mathcal{X} , it suffices to show $S_n|_{\mathcal{M}} \to P|_{\mathcal{M}}$ strongly and $S_n|_{\mathcal{M}^{\perp}} \to P|_{\mathcal{M}^{\perp}}$ strongly. Since both S_n and P are the identity map when restricted to \mathcal{M} , it remains to show $S_n|_{\mathcal{M}^{\perp}} \to P|_{\mathcal{M}^{\perp}} = 0$ strongly, but since $\overline{\mathcal{N}} = \mathcal{M}^{\perp}$ we only need to show $S_n|_{\mathcal{N}} \to 0$ strongly. Let $w = Ux - x \in \mathcal{N}$, then

$$||S_n w|| = ||S_n (U - I)x|| = ||\frac{1}{n} (U^n - I)x|| \le \frac{1}{n} (||U^n|| + ||I||)||x||,$$

where I is the identity map. Since U is unitary, so is U^n , thus $||U^n|| \leq 1$. Therefore

$$\|S_n w\| \le \frac{2}{n} \|x\| \to 0 \quad n \to \infty$$

for any $w \in \mathcal{N}$. This completes the proof.

In the following problems X is a locally compact Hausdorff space.

Problem 7. Let Y be a closed subset of X, and μ a Radon measure on Y. Prove that $I(f) = \int f|_Y d\mu$ is a positive linear functional on $C_c(X)$, and its induced Radon measure ν on X is given by $\nu(E) = \mu(E \cap Y)$.

Proof. Since integration is linear and preserves signs, it follows I is a positive linear functional on $C_c(X)$. To proceed, we first notice that Y^c is open and for any $f \prec Y^c$, $f|_Y \equiv 0$, so by Riesz representation theorem,

$$\nu(Y^c) = \sup\{\int_Y f|_Y d\mu : f \in C_c(X), f \prec Y^c\} = 0.$$

This implies $\nu(E) = \nu(E \cap Y)$ for any Borel set E. Then to show $\nu(E) = \mu(E \cap Y)$, it is a (somewhat tedious) routine to take the following steps.

Step 1.(compact sets) Let K be a compact subset of X. Then by Riesz representation theorem,

$$\nu(K) = \inf\{\int_Y f|_Y d\mu : f \in C_c(X), f \ge \chi_K\}.$$

Since Y is closed in X and X is locally compact Hausdorff, any compact set in X intersecting Y is compact in Y and any compact set in Y is compact in X. Notice μ is the unique Radon measure on Y representing $\int_{Y} -d\mu$, then

$$\mu(K \cap Y) = \inf\{\int_Y gd\mu : g \in C_c(Y), g \ge \chi_{K \cap Y}\}.$$

Now let $f \in C_c(X)$ with $f \ge \chi_K$, then $f|_Y \in C_c(Y)$ and $f|_Y \ge \chi_{K \cap Y}$, so

$$\int_Y f|_Y d\mu \ge \inf\{\int_Y g d\mu : g \in C_c(Y), g \ge \chi_{K \cap Y}\} = \mu(K \cap Y).$$

Taking infimum on left hand side, we get $\nu(K) \ge \mu(K \cap Y)$. On the other hand,

$$\nu(K \cap Y) = \inf\{\int_Y f|_Y d\mu : f \in C_c(X), f \ge \chi_{K \cap Y}\}.$$

So if we take any $g \in C_c(Y)$ with $g \ge \chi_{K \cap Y}$, then $g \in C_c(X)$ as well, hence $\int_Y g d\mu \ge \mu(K \cap Y)$. Taking infimum on left side, we get $\mu(K \cap Y) \ge \nu(K \cap Y) = \nu(K)$. Thus we have $\nu(K) = \mu(K \cap Y)$ for all compact K.

Step 2. (open sets) Let U be an open set of X. If $K \subset U$ and K compact, then $K \cap Y \subset U \cap Y$, thus $\nu(K) = \mu(K \cap Y) \leq \mu(U \cap Y)$. Therefore, by inner regularity

$$\nu(U) = \sup\{\nu(K) : K \subset U, K \text{ compact}\} \le \mu(U \cap Y).$$

On the other hand, if $K' \subset U \cap Y$ with K' compact in Y, then $K' \subset U$ and K' is compact in X, so

$$\mu(K') = \mu(K' \cap Y) = \nu(K') \le \sup\{\nu(K) : K \subset U, K \text{ compact}\} = \nu(U).$$

Take supremum on left side, we get

$$\mu(U \cap Y) = \sup\{\mu(K') : K' \subset U \cap Y, K' \text{ compact in } Y\} \le \nu(U).$$

This proves $\nu(U) = \mu(U \cap Y)$ for all open U.

Step 3.(Borel sets) Let E be a Borel set. Let U be open with $E \subset U$, then $\nu(U) = \mu(U \cap Y) \ge \mu(E \cap Y)$, hence by outer regularity,

$$\nu(E) = \inf\{\nu(U) : E \subset U, U \text{ open}\} \ge \mu(E \cap Y).$$

On the other hand, let V be any open subset of Y that contains $E \cap Y$, then $V = U \cap Y$ for some open subset U of X. We may assume, replacing U by $U \cup Y^c$ if necessary, that $E \subset U$. Then $\mu(V) = \mu(U \cap Y) = \nu(U) \ge \nu(E)$. Taking infimum, we have

$$\mu(E \cap Y) = \inf\{\mu(V) : E \cap Y \subset V, V \text{ open in } Y\} \ge \nu(E).$$

This (finally) completes the proof!

Problem 8. Let μ be a Radon measure on X. Let N be the union of all open $U \subset X$ such that $\mu(U) = 0$. Then N is open, $\mu(N) = 0$, and if V is open and $V \setminus N \neq \emptyset$ then $\mu(V) > 0$. N^c is called the support of μ . Prove $x \in \text{supp}(\mu)$ iff $\int f d\mu > 0$ for every $f \in C_c(X, [0, 1])$ s.t f(x) > 0.

Proof. It is clear that N is open since N is a union of open sets. To see $\mu(N) = 0$, we use inner regularity. Let K be any compact set contained in N, then K is covered by all those open U with $\mu(U) = 0$. By compactness, there is a finite subcover, hence $\mu(K)$ is no bigger than the sum of measures of those finite open sets that cover K, which is zero. It follows $\mu(K) = 0$ for all K compact contained in N, thus by inner regularity $\mu(N) = 0$. Moreover, if V is open with $V \setminus N \neq \emptyset$, then $\mu(V) > 0$, since otherwise $V \subset N$ by definition and $V \setminus N = \emptyset$.

Now if $x \in \operatorname{supp}(\mu)$, then for every $f \in C_c(X, [0, 1])$ with f(x) > 0, there is an open neighborhood V of x such that $f|_V \ge f(x)/2 > 0$. Since $x \in V \cap N^c$, $x \in V \setminus N \neq \emptyset$, therefore

$$\int_X f d\mu \ge \int_V f d\mu \ge f(x)\mu(V)/2 > 0.$$

Conversely if $x \notin \operatorname{supp}(\mu)$, then $x \in N$. Since X is locally compact, there exists compact K with $x \in K \subset N$. By locally compact version of Urysohn's lemma, there exists $f \in C(X, [0, 1])$ such that f = 1 on K and f = 0 outside a compact subset of U. Then f(x) = 1 > 0 but

$$\int_X f d\mu = \int_N f d\mu \le \mu(N) = 0.$$

1